

Part 2: The Extraction and Determination of BPA and Phthalate Content in Imported Plastic Toys Patricia Atkins SPEX CertiPrep

Housekeeping

- Everyone will receive a copy of the presentation slides
- The webinar is being recorded and will be posted to our YouTube account
- Questions will be answered at the end of the presentation
 - Type any questions you may have into the question box and we will answer them during the Q&A session
- One lucky attendee will win Theodore Gray's The Elements Card Deck!

Phthalates Still A Topic of Concern

Science News

... from universities, journals, and other research organizations

Phthalates in PVC Floors Taken Up by the Body in Infants

ScienceDaily (May 23, 2012) — A new study at Karlstad University in Sweden shows that phthalates from PVC flooring materials is taken up by our bodies. Phthalates are substances suspected to cause asthma and allergies, as well as other chronic diseases in children. The study shows that children can ingest these softening agents with food but also by breathing and through the skin.

Phthalates from PVC flooring materials is taken up by our bodies. Phthalates are substances suspected to cause asthma and allergies, as well as other chronic diseases in children. The study shows that children can ingest these softening agents with food but also by breathing and through the skin. (Credit: © burcucetin / Fotolia)

http://www.sciencedaily.com/releases/2012/05/120523102142.htm

SPEX CertiPrep. Inorganic & Organic Certified Reference Materials

Common Phthalates

Name	Acronym	Structural formula	CAS No.
Dimethyl phthalate	DMP	$C_6H_4(COOCH_3)_2$	131-11-3
Diethyl phthalate	DEP	$C_6H_4(COOC_2H_5)_2$	84-66-2
Diallyl phthalate	DAP	$C_6H_4(COOCH_2CH=CH_2)_2$	131-17-9
Di-n-propyl phthalate	DPP	$C_6H_4[COO(CH_2)_2CH_3]_2$	131-16-8
Di-n-butyl phthalate	DBP	$C_6H_4[COO(CH_2)_3CH_3]_2$	84-74-2
Diisobutyl phthalate	DIBP	$C_6H_4[COOCH_2CH(CH_3)_2]_2$	84-69-5
Butyl cyclohexyl phthalate	BCP	$CH_3(CH_2)_3OOCC_6H_4COOC_6H_{11}$	84-64-0
Di-n-pentyl phthalate	DNPP	$C_6H_4[COO(CH_2)_4CH_3]_2$	131-18-0
Dicyclohexyl phthalate	DCP	$C_6H_4[COOC_6H_{11}]_2$	84-61-7
Butyl benzyl phthalate	BBP	$CH_3(CH_2)_3OOCC_6H_4COOCH_2C_6H_5$	85-68-7
Di-n-hexyl phthalate	DNHP	$C_6H_4[COO(CH_2)_5CH_3]_2$	84-75-3
Butyl decyl phthalate	BDP	$CH_3(CH_2)_3OOCC_6H_4COO(CH_2)_9CH_3$	89-19-0
Di(2-ethylhexyl) phthalate	DEHP	$C_6H_4[COOCH_2CH(C_2H_5)(CH_2)_3CH_3]_2$	117-81-7
Di(n-octyl) phthalate	DNOP	$C_6H_4[COO(CH_2)_7CH_3]_2$	117-84-0
Diisodecyl phthalate	DIDP	C6H4[COO(CH2)7CH(CH3)2]2	26761-40-0
n-Octyl n-decyl phthalate	ODP	$CH_3(CH_2)_7OOCC_6H_4COO(CH_2)_9CH_3$	119-07-3
Diisononyl phthalate	DINP	$C_6H_4[COO(CH_2)_6CH(CH_3)_2]_2$	28553-12-0

Common Phthalates

Name	Acronym	Structural formula	CAS No.
Di-n-butyl phthalate	DBP	$C_6H_4[COO(CH_2)_3CH_3]_2$	84-74-2
Butyl benzyl phthalate	BBP	CH ₃ (CH ₂) ₃ OOCC ₆ H ₄ COOCH ₂ C ₆ H ₅	85-68-7
Di(2-ethylhexyl) phthalate	DEHP	$C_{6}H_{4}[COOCH_{2}CH(C_{2}H_{5})(CH_{2})_{3}CH_{3}]_{2}$	117-81-7
Di(n-octyl) phthalate	DNOP	$C_6H_4[COO(CH_2)_7CH_3]_2$	117-84-0
Diisodecyl phthalate	DIDP	C6H4[COO(CH2)7CH(CH3)2]2	26761-40-0
Diisononyl phthalate	DINP	$C_6H_4[COO(CH_2)_6CH(CH_3)_2]_2$	28553-12-0

Common Phthalates

Compound	Uses			
DMP	Insect repellent, plastic			
DEP	Shampoo, scents, soap, lotion, cosmetics, industrial solvent, medications			
DBP	Adhesives, caulk, cosmetics, industrial solvent, medications			
DIBP	Adhesives, caulk, cosmetics, industrial solvent			
BBP	Vinyl flooring, adhesives, sealants, industrial solvent			
DCHP	Stabilizer in rubber, polymers			
DEHP	Soft plastic, including tubing, toys, home products, food containers, food packaging			
DOP	Soft plastic			
DINP	Soft plastics, replacement for DEHP			

Phthalates and Cumulative Risk Assessment The Task Ahead (2008) Board on Environmental Studies and Toxicology (BEST)

Children & Exposure to Phthalates

- Medical Devices: may contain 20-40% DEHP by weight
- Medication: coatings
- Childcare Products
 - Ointments
 - Lotions
 - Shampoos
- Childcare Articles
 - Pacifiers
 - Bottles
 - Plates
 - Spoons
- Toys

Regulations & Banned Phthalates

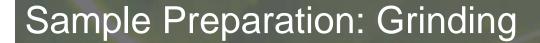
		DEHP	DBP	BBP	DINP	DIDP	DNOP
US	CPSIA CPSC-CH-C1001-09.03	0.1% individual (All toys & Childcare)	0.1% individual (All toys & Childcare)	0.1% individual (All toys & Childcare)	0.1% individual (Oral Contact)	0.1% individual (Oral Contact)	0.1% individual (Oral Contact)
EU	EC Directive 2005/84/EC	0.1% combined (All toys)				0.1% combined so with Oral Con	
Japa	ST Standard Part 3 / Food Sanitation Law	0.1% combined (All toys)			0.1% combined s with Oral Con		

Infant & Children's Exposure to BPA

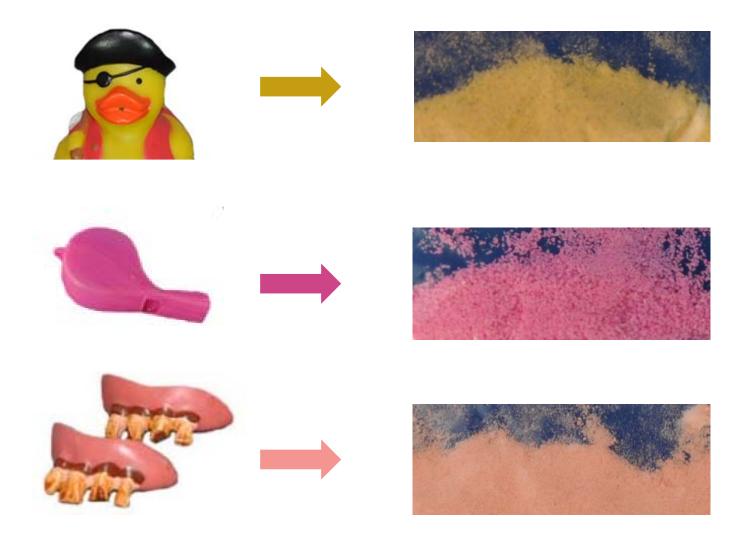
- Food & Food Packaging
 - Can linings & Containers
 - Baby Bottles
 - up to 13 μg/kg of body wt/day
 - Water Bottles
 - Liquid Baby Formula
 - 0.48 to 11 ng/g
- Paper: Receipts & Labels
- PVC Pipes
- Medical Devices
- Toys
- During Pregnancy
 - US study (2009): avg 2.8 ng/mL in 9/10 umbilical cord bloods

Regulations

Area	Scope of BPA Ban	Requirement
US	Various childcare products	No National Ban; State by State
EU	PC baby bottles	Banned
Canada	PC baby bottles	Banned
Canada	BPA deemed toxic	Action


Toy Samples

26 Toys from Discount or Dollar Stores



Cryogenic grinding allows for a fine analytical powder not possible with room temperature grinding

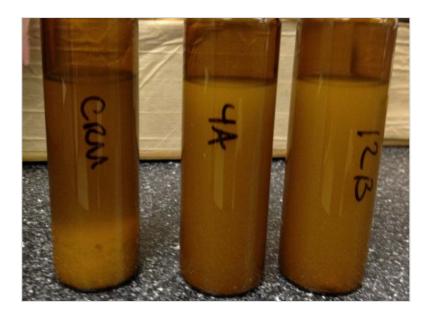
Sample Identifications

Туре	# of Samples		
LDPE	22		
PVC	17		
HDPE	6		
PC	7		
PP	2		
ABS	1		
Silicone	1		
Cloth	1		

Testing Method for Phthalates

CPSC-CH-C1001-09.03

- Standard Operating Procedure for Determination of Phthalates (Children's Toys & Childcare Articles)
- Measurement of 6 Restricted Phthalates
- Outlines:
 - Sample Preparation
 - Extraction
 - Analysis


Sample Extraction: CPSC

Sample Preparation	Extraction Method	Analysis Method
	CPSC-CH-C1001-09.3 Health Canada Method C-34 ² (http://www.hc-sc.gc.ca/cps-spc/prod-test-essai/method-chem-chim/c-34-eng.php)	CPSC-CH-C1001-09.3
	EN 14372:2004 ³ EPA 3540C, Soxhlet Extraction (http://www.epa.gov/epawaste/hazard/testmethods/sw/846/pdfs/3540c.pdf)	Health Canada Method C-34
CPSC-CH-C1001-09.3	EPA 3541, Automated Soxhlet Extraction (http://www.epa.gov/epawaste/hazard/testmethods/sw 846/pdfs/3541.pdf) EPA 3545A, Pressurized Fluid Extraction (http://www.epa.gov/epawaste/hazard/testmethods/sw 846/pdfs/3545a.pdf)	EN 14372:2004
	EPA 3546, Microwave Extraction (http://www.epa.gov/epawaste/hazard/testmethods/sw 846/pdfs/3546.pdf)	EPA 8270D ⁴ (must be modified appropriately to include DINP and DIDP)
	EPA 3550C, Ultrasonic Extraction (http://www.epa.gov/epawaste/hazard/testmethods/sw 846/pdfs/3550c.pdf) ASTM D 2124-99 (2004) ⁵ California Dept. of Toxic Substances Control Method ⁶	California Dept. of Toxic Substances Control Method

CPSC Wet Extraction Method: PVC

- Intended for PVC not other materials
- For 0.05 g = 15 mL solvent minimum
 - PVC Toy samples don't always precipitate with 15 mL
 - Increased solvent dilutes sample
- At the CPSC limit (0.1% or 1000 μg/g)
 - Straight GC injection = 3 ppm
 - Diluted per method = 0.7 ppm
 - SIM Mode
 - Miss other additives
 - Misidentify other additives as phthalates
 - Miss low level phthalates or BPA
- What is the extraction efficiency of the method?

CPSC Wet Extraction Method: PVC

- SPEX CertiPrep CRM-PE001: Polyethylene Matrix
 - Recovery for PE material using PVC wet method = 50%
- New CRM developed for PVC
 - Recovery for CPSC Method
 = 83 94%
 - Poor Reproducibility
 - GC Contamination

Phthalate	CPSC Wet Method
	%RSD
Dimethyl phthalate	35.09
Diethyl phthalate	36.96
Di-n-butyl phthalate	48.42
Butyl benzyl phthalate	57.72
Bis(2-ethylhexyl)phthalate	58.05
Di-n-octyl phthalate	58.24
Diisononyl phthalate	50.97
Diisodecyl phthalate	60.69

Microwave Method Optimization

- Methods Developed by CEM
 - HDPE method: Cyclohexane: Acetone (Recovery >95%)
 - LDPE method: IPA solvent
 - PVC method: Ether
 - Did not want to run ether
 - Possible dissolution of PVC with Acetone
- Goal was not to dissolve polymer

Temp ^o C	Cyclohexane	IPA	Acetone	Solubility	% Recovery
130	50	-	50	Dissolved	NA
130	80	-	20	Dissolved	NA
100	80	-	20	Partitioned/Slightly dissolved	91-101
100	80	20	-	Not dissolved	86-98
130	80	20	-	Not dissolved	93-100
150	80	20	-	Dissolved	NA
130	50	50	-	Not dissolved	95-105
150	50	50	-	Not dissolved	99-102

© SPEX CertiPrep. Inc. 2012

Extraction Methods

HDPE

Microwave Extraction

- 10 mL Cyclohexane: Acetone (30:70)
- 0.2 g sample
- Ramp to Temperature
 - 10 minutes to 140 °C
 - Hold 10 minutes
- Stirring used

PVC

Microwave Extraction

- 10 mL Cyclohexane: IPA (50:50)
- 0.2 g sample
- Ramp to Temperature
 - 10 minutes to 130 °C
 - Hold 10 minutes
- Stirring used

CEM Applications Support

Application Note for Solvent Extraction

Sample Type: High Density Polyethylene (Ground to 1mm)

Sample Category: Polymers/Plastics

Analyte: Anti-oxidants, slip agents, stabilizers

Sample Preparation Procedure

Sample Weight: 2 grams

Reagents: Acetone:Cyclohexane (7:3)

Reagent Volume: 25mL

Recommended Equipment

MARS

GreenChem

This method is appropriate for use with GreenChem; Xpress

Heating Program: Ramp to Temperature Control

Stage	Max. Power	% Power	Ramp (min.)	Pressure (psi)	Temperature (°C)	Hold (min.)
(1)	1600 W	100	10:00	200	140	10:00

Comparison of CPSC Wet Method vs. Microwave Extraction for PVC

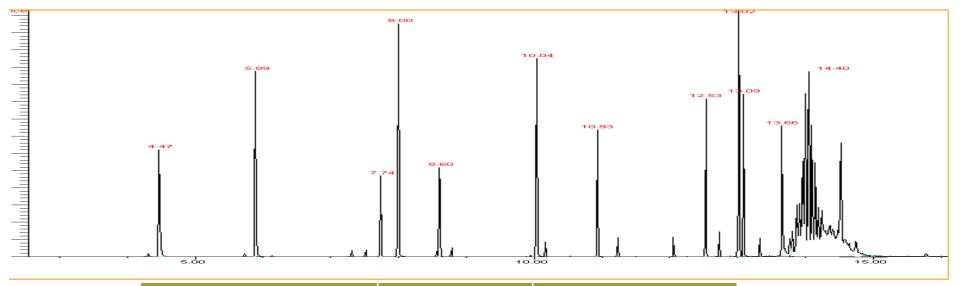
THF Wet Method

- Large amounts of solvent
- Less concentration on GCMS system: miss some additives
- Interference of polymers with GCMS operation
- Poor reproducibility
- Time consuming

Microwave Method

- 10 15 mL of solvent for up to 1 g of sample
- Allows high enough concentration of small phthalates to see on GCMS
- Dilution possible for higher concentration phthalates
- Little interference/carryover seen on GCMS
- Great reproducibility
- Fast, multiple samples processed at once

Comparison of CPSC Wet Method vs. Microwave Extraction



Phthalate	Optimized Microwave Method %RSD	CPSC Wet Method %RSD
Dimethyl phthalate	2.48	35.09
Diethyl phthalate	0.72	36.96
Di-n-butyl phthalate	0.70	48.42
Butyl benzyl phthalate	2.26	57.72
Bis(2-ethylhexyl)phthalate	1.02	58.05
Di-n-octyl phthalate	1.29	58.24
Diisononyl phthalate	0.36	50.97
Diisodecyl phthalate	0.94	60.69

Methods & Materials: Instrument Conditions

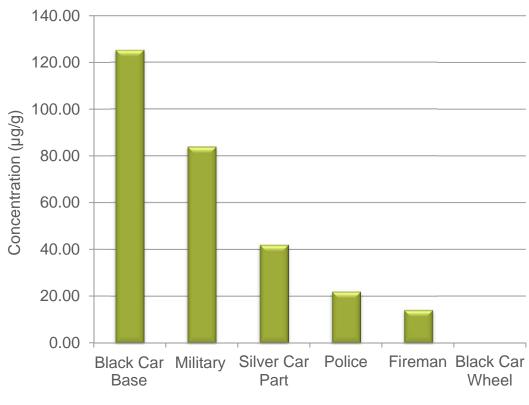
- GC-MS in scan mode with EIC (35-450 m/z)
- CV-5 capillary column (30 m x 0.25 mm x 0.25 μm)

Phthalate	Abbreviation	lons
Di-n-butyl phthalate	DBP	149 , 150, 29, 41, 57
Bisphenol A	BPA	213 , 228, 119, 214, 91
Butyl benzyl phthalate	BBP	149 , 91, 206, 65, 104
Di(2-ethylhexyl) phthalate	DEHP	149 , 167, 279, 71
Di(n-octyl) phthalate	DNOP	149 , 279, 43, 57
Dinonyl phthalate	DINP	149, 293 , 71, 57, 43
Diisodecyl phthalate	DIDP	149, 307 , 71, 141

HDPE Toys

- Plastic Figures
 - Police
 - Military
 - Fireman

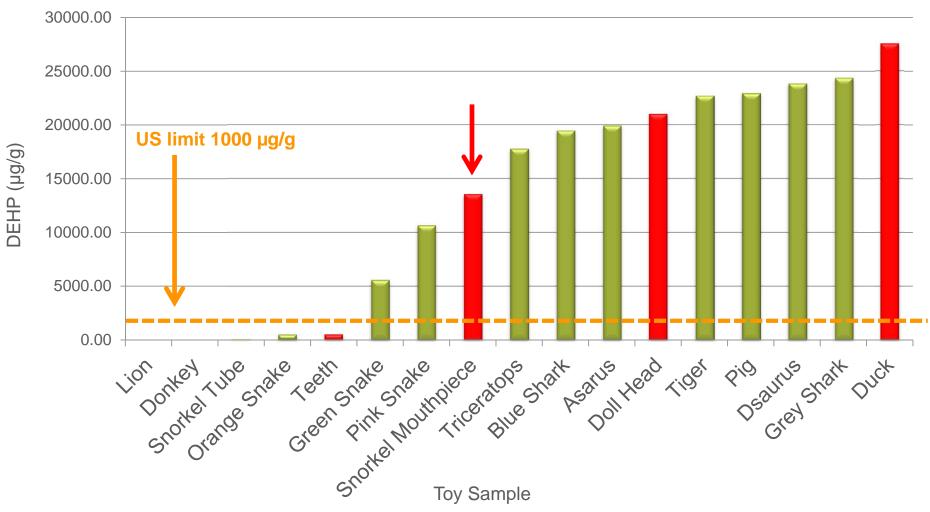
- Toy Car Parts
 - Black Base
 - Black Wheel
 - Silver parts



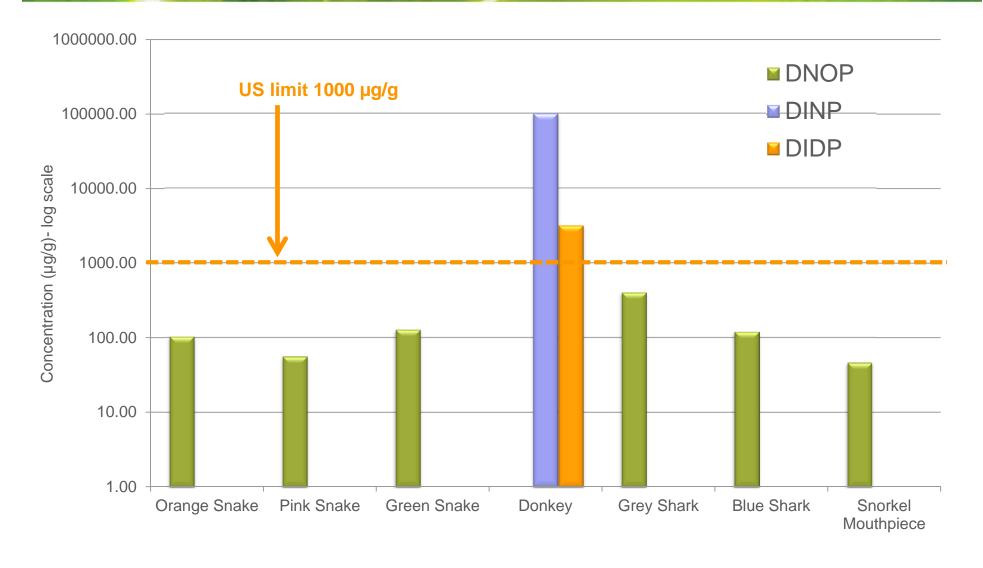
Results: HDPE Toys

- One restricted phthalate
 - DNOP
 - $< 0.1\% (1000 \mu g/g)$
- No BPA
- Wheel
 - Higher Alkanes

Di-n-octyl phthalate (µg/g)

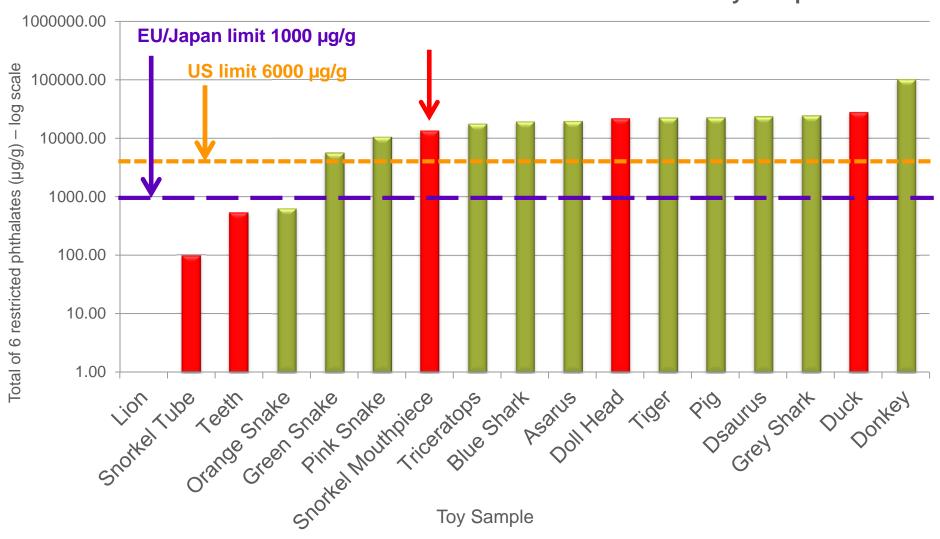


PVC Toys: DEHP

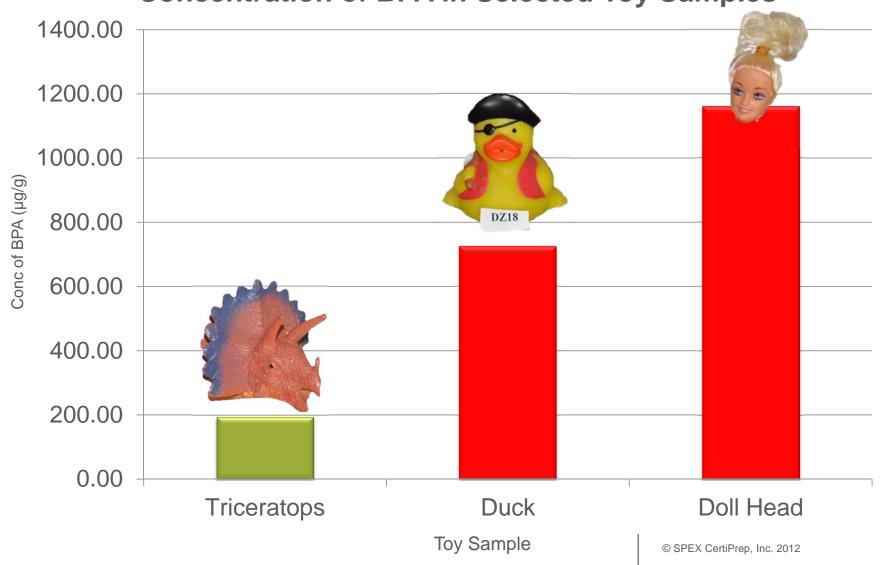


Total DEHP in each toy sample

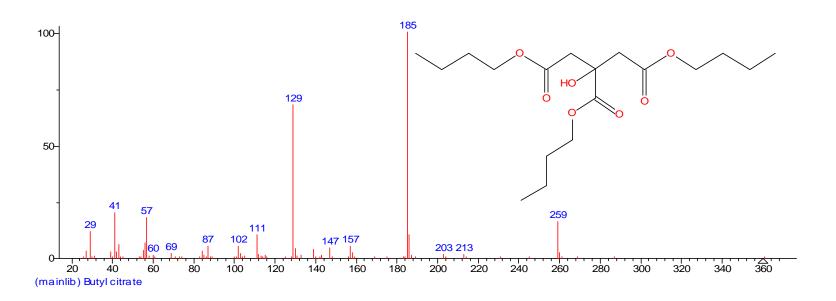
PVC Toys: DINP, DIDP, DNOP

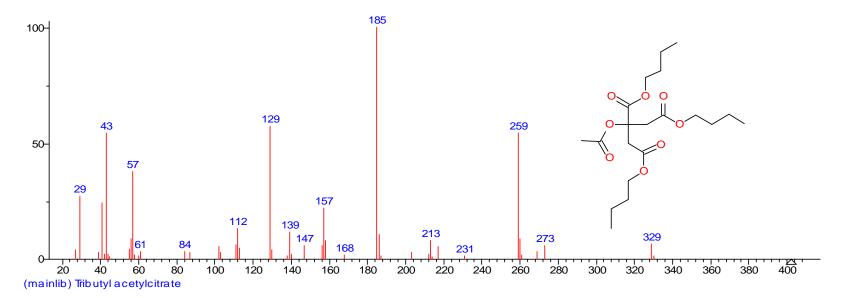


PVC Toys: Total Phthalates


Total Concentration of Six Restricted Phthalates in Each Toy Sample

Results: BPA




Concentration of BPA in Selected Toy Samples

Results: Other Compounds

Results: Other Compounds

- Alternative Plasticizers
 - Butyl Citrate
 - Tributyl Acetyl Citrate
- Measurable levels in 9 of 17 toys
 - Large % amounts of either one or both = 7 toys
 - Highest amounts of BC & ATBC= Lion

Conclusions: PVC Toys

DBP & BBP: <50 μg/g

DEHP: Most detected phthalate

15/17 Contained DEHP

• 12/17 > CPSC limit of 0.1% DEHP

Lowest Amounts of DEHP

- No phthalates but % of alternate plasticizers
 - Tributyl Acetyl Citrate
 - Butyl Citrate

Conclusions: PVC Toys

- Total Phthalates
 - Highest total
 - Donkey (DIDP & DINP)
 - Oral Contact Toys
 - Snorkel mouthpiece (> limit)
 - Possible Oral Contact Toys
 - Duck (DEHP & BPA)
- Bisphenol A
 - Detected in 3 of 17 toys
 - Up to 1200 μg/g (Doll Head)

Conclusions

SPEX CertiPrep. Inorganic & Organic Certified Reference Materials

- HDPE Toys contained low amounts of phthalates
 - Only DNOP detected (< limit)
 - Higher alkanes seen for one toy part
- PVC toys
 - Most of the toys contained large amounts of DEHP > all limits
 - Some PVC toys also contained DINP, DIDP and DNOP
 - BPA detected possible oral contact toys:
 Duck & Doll Head
 - 50% of PVC toys contained % quantities of alternate plasticizers
- Further studies planned on the other polymer toys

Standards Used in This Study

Phthalate & BPA Standards from SPEX CertiPrep:

S-509: Bisphenol A Standard

CRM-PE001: PE QC Standard

CRM-PEBLK: PE Blank

CRM-PVC001: PVC QC Standard

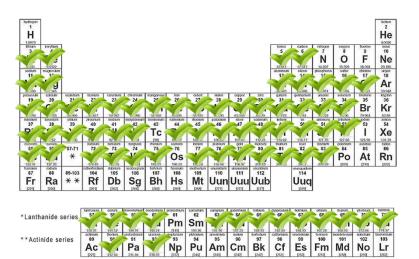
CRM-PVCBLK: PVC Blank

CLPS-1: Internal Standards

- SPEX CertiPrep Chemists
- CEM Corporation

CEM Applications Support

- For Applications Support
 - Email: analytical.support@cem.com
 - Phone: 800-726-3331
- For Sales Support
 - Email: info@cem.com
 - Phone: 800-726-3331



New Products

 Full line of 1 ppm ICP-MS Single Element Standards

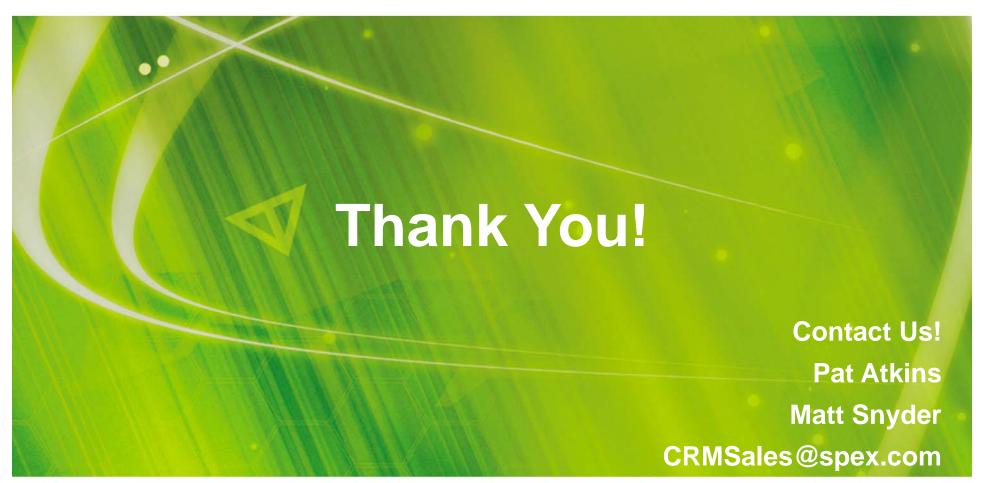
Visit www.spexcertiprep.com for more information

 Trace Metals in Natural Wine Matrix Standards

- Red: TM-WINE-R1A

- White: TM-WINE-W1A

The Photographic Card Deck of the Periodic Table


By Theodore Gray

